851 research outputs found

    Mode entanglement of electrons in the one-dimensional Frenkel-Kontorova model

    Full text link
    We study the mode entanglement in the one-dimensional Frenkel-Kontorova model, and found that behaviors of quantum entanglement are distinct before and after the transition by breaking of analyticity. We show that the more extended the electron is, the more entangled the corresponding state. Finally, a quantitative relation is given between the average square of the concurrence quantifying the degree of entanglement and the participation ratio characterizing the degree of localization.Comment: 4 pages, 4 figures. V

    Density Matrix Renormalization Group Study of the S=1/2 Anisotropic Antiferromagnetic Heisenberg Chains with Quasiperiodic Exchange Modulation

    Full text link
    The low energy behavior of the S=1/2 antiferromagnetic XY-like XXZ chains with precious mean quasiperiodic exchange modulation is studied by the density matrix renormalization group method. It is found that the energy gap of the chain with length N scales as exp⁥(−cNω)\exp (-cN^{\omega}) with nonuniversal exponent ω\omega if the Ising component of the exhange coupling is antiferromagnetic. This behavior is expected to be the characteristic feature of the quantum spin chains with relevant aperiodicity. This is in contrast to the XY chain for which the precious mean exchange modulation is marginal and the gap scales as N−zN^{-z}. On the contrary, it is also verified that the energy gap scales as N−1N^{-1} if the Ising component of the exhange coupling is ferromagnetic. Our results are not only consistent with the recent bosonization analysis of Vidal, Mouhanna and Giamarchi but also clarify the nature of the strong coupling regime which is inaccesssible by the bosonization approach.Comment: 8 pages, 15 figures, 1 table; Proceedings of the workshop 'Frontiers in Magnetism', Kyoto, Oct. 199

    Metal-insulator transitions in cyclotron resonance of periodic nanostructures due to avoided band crossings

    Full text link
    A recently found metal-insulator transition in a model for cyclotron resonance in a two-dimensional periodic potential is investigated by means of spectral properties of the time evolution operator. The previously found dynamical signatures of the transition are explained in terms of avoided band crossings due to the change of the external electric field. The occurrence of a cross-like transport is predicted and numerically confirmed

    Disordered Critical Wave functions in Random Bond Models in Two Dimensions -- Random Lattice Fermions at E=0E=0 without Doubling

    Get PDF
    Random bond Hamiltonians of the π\pi flux state on the square lattice are investigated. It has a special symmetry and all states are paired except the ones with zero energy. Because of this, there are always zero-modes. The states near E=0E=0 are described by massless Dirac fermions. For the zero-mode, we can construct a random lattice fermion without a doubling and quite large systems ( up to 801×801801 \times 801) are treated numerically. We clearly demonstrate that the zero-mode is given by a critical wave function. Its multifractal behavior is also compared with the effective field theory.Comment: 4 pages, 2 postscript figure

    Bipartite entanglement and localization of one-particle states

    Full text link
    We study bipartite entanglement in a general one-particle state, and find that the linear entropy, quantifying the bipartite entanglement, is directly connected to the paricitpation ratio, charaterizing the state localization. The more extended the state is, the more entangled the state. We apply the general formalism to investigate ground-state and dynamical properties of entanglement in the one-dimensional Harper model.Comment: 4 pages and 3 figures. Version

    Self-similarity under inflation and level statistics: a study in two dimensions

    Full text link
    Energy level spacing statistics are discussed for a two dimensional quasiperiodic tiling. The property of self-similarity under inflation is used to write a recursion relation for the level spacing distributions defined on square approximants to the perfect quasiperiodic structure. New distribution functions are defined and determined by a combination of numerical and analytical calculations.Comment: Latex, 13 pages including 6 EPS figures, paper submitted to PR

    Fractal Spectrum of a Quasi_periodically Driven Spin System

    Full text link
    We numerically perform a spectral analysis of a quasi-periodically driven spin 1/2 system, the spectrum of which is Singular Continuous. We compute fractal dimensions of spectral measures and discuss their connections with the time behaviour of various dynamical quantities, such as the moments of the distribution of the wave packet. Our data suggest a close similarity between the information dimension of the spectrum and the exponent ruling the algebraic growth of the 'entropic width' of wavepackets.Comment: 17 pages, RevTex, 5 figs. available on request from [email protected]

    Universalities in One-electron Properties of Limit Quasi-periodic Lattices

    Full text link
    We investigate one-electron properties of one-dimensional self-similar structures called limit quasi-periodic lattices. The trace map of such a lattice is nonconservative in contrast to the quasi-periodic case, and we can determine the structure of its attractor. It allows us to obtain the three new features of the present system: 1) The multi-fractal characters of the energy spectra are {\it universal}. 2) The supports of the f(α)f(\alpha)-spectra extend over the whole unit interval, [0,1][0, 1]. 3) There exist marginal critical states.Comment: 4 pages, 2figure

    A compact proton synchrotron with combined-function lattice dedicated for cancer therapy

    Get PDF
    A compact proton synchrotron with combined function lattice has been designed as a dedicated machine for cancer therapy because of its merits of easy operation and low construction cost. The lattice has a six-fold symmetry and its radius of curvature and circumference are 1.9 m and 23.9 m, respectively. For the purpose of establishing a good reference design, we have constructed a model magnet based on the three-dimensional magnetic field calculation. A magnetic field measurement has been performed with use of a three-dimensional Hall- probe. In the present paper, the results of these developments is presented together with the outline of the reference design. (3 refs)

    g-factor of a tightly bound electron

    Get PDF
    We study the hyperfine splitting of an electron in hydrogen-like 209Bi82+^{209}Bi ^{82+} . It is found that the hfs energy splitting can be explained well by considering the g-factor reduction due to the binding effect of a bound electron. We determine for the first time the experimental value of the magnetic moment of a tightly bound electron.Comment: 6 pages, Latex, Phys. Rev. A in pres
    • 

    corecore